首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of DNA damage tolerance
Authors:Xin Bi
Affiliation:Xin Bi, Department of Biology, University of Rochester, Rochester, NY 14627, United States
Abstract:DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance(DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis(TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching(TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
Keywords:DNA damage tolerance   Template switching   DNA damage bypass   DNA replication   Replicative stress   Translesion synthesis   Ubiquitination   Sumoylation
本文献已被 CNKI 等数据库收录!
点击此处可从《World journal of biological chemistry》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号