首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Early Abscisic Acid Accumulation Regulates Ascorbate and Glutathione Metabolism in Soybean Leaves Under Progressive Water Stress
Authors:Xing  Xinghua  Zhou  Qin  Xing  Han  Jiang  Haidong  Wang  Shaohua
Institution:1.Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
;
Abstract:

Ascorbate (AsA) and glutathione (GSH) play an important role in improving the tolerance of plants to water stress. The objective of this study was to investigate the effect of early abscisic acid (ABA) accumulation on AsA and GSH metabolism in soybean plants after 24 h of exposure to progressive water stress. The results showed that AsA, total AsA, GSH and total GSH content, and ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), GSH reductase (GR), GSH peroxidase (GPX), l-galactono-1,4-lactone dehydrogenase (GLDH), and γ-glutamylcysteine synthetase (γ-GCS) activities were increased by progressive water stress. The above increases, except for total GSH content and the activities of GLDH and γ-GCS, were blocked by pretreatment with tungstate, an ABA biosynthesis inhibitor, which significantly suppressed the early increase in ABA and reactive oxygen species (ROS) in stressed plants. Application of ABA reversed the effects of tungstate. Pretreatments with several ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NADPH oxidase, diphenyleneiodonium (DPI), significantly arrested the early accumulation of ROS but not ABA in stressed plants. Furthermore, the above-mentioned pretreatments remarkably prevented any increase in APX, MDHAR, DHAR, GR, and GPX activities, as well as AsA, total AsA and GSH levels in stressed plants. Our results indicated that early ABA accumulation caused by progressive water stress triggers an early rise in ROS levels, which, in turn, leads to regulation of AsA and GSH metabolism.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号