首页 | 本学科首页   官方微博 | 高级检索  
     


Disruption of NAD~+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions
Authors:Manali Phadke  Natalia Krynetskaia  Anurag Mishra  Carlos Barrero  Salim Merali  Scott A Gothe  Evgeny Krynetskiy
Affiliation:Manali Phadke, Natalia Krynetskaia, Carlos Barrero, Salim Merali, Scott A Gothe, Evgeny Krynetskiy, Temple University School of Pharmacy, Philadelphia, PA 19140, United StatesNatalia Krynetskaia, Anurag Mishra, Evgeny Krynetskiy, Jayne Haines Center for Pharmacogenomics and Drug Safety, Temple University, Philadelphia, PA 19140, United States
Abstract:AIM: To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and mobility of GAPDH in cancer cells treated with chemotherapeutic agents.METHODS: We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters (diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching (FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS: Using MALDI-TOF analysis, we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94, S98, and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH, we demonstrated accumulation of phospho-T99-GAPDH in the nuclear fractions of A549, HCT116, and SW48 cancer cells after cytotoxic stress. We performed site-mutagenesis, and estimated enzymatic properties, intranuclear distribution, and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+ (Km = 741 ± 257 μmol/L in T99I vs 57 ± 11.1 µmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP (fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions.CONCLUSION: Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.
Keywords:NAD+   Binding site   Fluorescence recovery after photobleaching   Nuclear proteins   Mutation   Glyceraldehyde 3-phosphate dehydrogenase   Anticancer agents
本文献已被 CNKI 等数据库收录!
点击此处可从《World journal of biological chemistry》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号