首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Obligate symbionts activate immune system development in the tsetse fly
Authors:Weiss Brian L  Maltz Michele  Aksoy Serap
Institution:Division of Epidemiology of Microbial Diseases, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA. brian.weiss@yale.edu
Abstract:Many insects rely on the presence of symbiotic bacteria for proper immune system function. However, the molecular mechanisms that underlie this phenomenon are poorly understood. Adult tsetse flies (Glossina spp.) house three symbiotic bacteria that are vertically transmitted from mother to offspring during this insect's unique viviparous mode of reproduction. Larval tsetse that undergo intrauterine development in the absence of their obligate mutualist, Wigglesworthia, exhibit a compromised immune system during adulthood. In this study, we characterize the immune phenotype of tsetse that develop in the absence of all of their endogenous symbiotic microbes. Aposymbiotic tsetse (Glossina morsitans morsitans Gmm(Apo)]) present a severely compromised immune system that is characterized by the absence of phagocytic hemocytes and atypical expression of immunity-related genes. Correspondingly, these flies quickly succumb to infection with normally nonpathogenic Escherichia coli. The susceptible phenotype exhibited by Gmm(Apo) adults can be reversed when they receive hemocytes transplanted from wild-type donor flies prior to infection. Furthermore, the process of immune system development can be restored in intrauterine Gmm(Apo) larvae when their mothers are fed a diet supplemented with Wigglesworthia cell extracts. Our finding that molecular components of Wigglesworthia exhibit immunostimulatory activity within tsetse is representative of a novel evolutionary adaptation that steadfastly links an obligate symbiont with its host.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号