首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient formulations for exact stochastic simulation of chemical systems
Authors:Mauch Sean  Stalzer Mark
Affiliation:Center for Advanced Computing Research, California Institute of Technology, M/C 158-79, Pasadena, CA 91125, USA. sean@caltech.edu
Abstract:One can generate trajectories to simulate a system of chemical reactions using either Gillespie's direct method or Gibson and Bruck's next reaction method. Because one usually needs many trajectories to understand the dynamics of a system, performance is important. In this paper, we present new formulations of these methods that improve the computational complexity of the algorithms. We present optimized implementations, available from http://cain.sourceforge.net/, that offer better performance than previous work. There is no single method that is best for all problems. Simple formulations often work best for systems with a small number of reactions, while some sophisticated methods offer the best performance for large problems and scale well asymptotically. We investigate the performance of each formulation on simple biological systems using a wide range of problem sizes. We also consider the numerical accuracy of the direct and the next reaction method. We have found that special precautions must be taken in order to ensure that randomness is not discarded during the course of a simulation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号