首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of thin gelatin hydrogel membranes with balloon properties for dynamic tissue engineering
Authors:Morten Leth Jepsen  Line Hagner Nielsen  Anja Boisen  Kristoffer Almdal  Martin Dufva
Affiliation:Department of Micro- and Nanotechnology, The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, Kongens Lyngby, Denmark
Abstract:Cell or tissue stretching and strain are present in any in vivo environment, but is difficult to reproduce in vitro. Here, we describe a simple method for casting a thin (about 500 μm) and soft (about 0.3 kPa) hydrogel of gelatin and a method for characterizing the mechanical properties of the hydrogel simply by changing pressure with a water column. The gelatin is crosslinked with mTransglutaminase and the area of the resulting hydrogel can be increased up 13-fold by increasing the radial water pressure. This is far beyond physiological stretches observed in vivo. Actuating the hydrogel with a radial force achieves both information about stiffness, stretchability, and contractability, which are relevant properties for tissue engineering purposes. Cells could be stretched and contracted using the gelatin membrane. Gelatin is a commonly used polymer for hydrogels in tissue engineering, and the discovered reversible stretching is particularly interesting for organ modeling applications.
Keywords:biomimetics  gelatin  hydrogels  rheology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号