首页 | 本学科首页   官方微博 | 高级检索  
     


Two-Dimensional Polyacrylamide Gel Analysis of Plodia interpunctella Granulosis Virus
Authors:Russell D L  Consigli R A
Affiliation:Division of Biology, Section of Virology and Oncology, Kansas State University, Manhattan, Kansas 66506.
Abstract:Polyomavirus middle-T antigen contains a contiguous sequence of 22 hydrophobic amino acids near the carboxyl terminus, which is the putative membrane-binding domain of the protein. The DNA encoding this region was mutated to form a series of deletions, insertions, and substitutions called RX mutants. The phenotypes of these mutants fall into three groups based on the transforming and biochemical properties of their encoded proteins. The first group, with deletions outside but proximal to the hydrophobic domain, displayed an essentially wild-type phenotype. A second group, with extensive deletions within the region encoding the hydrophobic domain, expressed middle-T species which did not fractionate with cellular membranes or associate with pp60c-src and which were defective in their ability to transform. A third group of mutants with more subtle predicted alterations in the hydrophobic domain were wild type for the biochemical parameters investigated but were unable to transform cultured rodent cells. These observations are consistent with previous findings that membrane association plays an important role in transformation by middle-T and that, whereas association between middle-T and pp60c-src is a necessary correlate of transformation, it is not sufficient. A comparison of murine polyomavirus middle-T and a newly described hamster papovavirus putative middle-T revealed a strong homology between their respective hydrophobic-domain amino acid sequences. This homology is not observed in the anchorage domains of other model proteins, and this may imply that the middle-T hydrophobic domain is important in transformation for reasons other than simple membrane association.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号