首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium signaling phenomena in heart diseases: a perspective
Authors:Sajal Chakraborti  Sudip Das  Pulak Kar  Biswarup Ghosh  Krishna Samanta  Saurav Kolley  Samarendranath Ghosh  Soumitra Roy  Tapati Chakraborti
Institution:(1) Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India;(2) Department of Cardiology, Belle Vue Clinic, Kolkata, 700017, India;(3) Bangur Institute of Neurology, Kolkata, 700025, India
Abstract:Ca2+ is a major intracellular messenger and nature has evolved multiple mechanisms to regulate free intracellular (Ca2+)i level in situ. The Ca2+ signal inducing contraction in cardiac muscle originates from two sources. Ca2+ enters the cell through voltage dependent Ca2+ channels. This Ca2+ binds to and activates Ca2+ release channels (ryanodine receptors) of the sarcoplasmic reticulum (SR) through a Ca2+ induced Ca2+ release (CICR) process. Entry of Ca2+ with each contraction requires an equal amount of Ca2+ extrusion within a single heartbeat to maintain Ca2+ homeostasis and to ensure relaxation. Cardiac Ca2+ extrusion mechanisms are mainly contributed by Na+/Ca2+ exchanger and ATP dependent Ca2+ pump (Ca2+-ATPase). These transport systems are important determinants of (Ca2+)i level and cardiac contractility. Altered intracellular Ca2+ handling importantly contributes to impaired contractility in heart failure. Chronic hyperactivity of the β-adrenergic signaling pathway results in PKA-hyperphosphorylation of the cardiac RyR/intracellular Ca2+ release channels. Numerous signaling molecules have been implicated in the development of hypertrophy and failure, including the β-adrenergic receptor, protein kinase C, Gq, and the down stream effectors such as mitogen activated protein kinases pathways, and the Ca2+ regulated phosphatase calcineurin. A number of signaling pathways have now been identified that may be key regulators of changes in myocardial structure and function in response to mutations in structural components of the cardiomyocytes. Myocardial structure and signal transduction are now merging into a common field of research that will lead to a more complete understanding of the molecular mechanisms that underlie heart diseases. Recent progress in molecular cardiology makes it possible to envision a new therapeutic approach to heart failure (HF), targeting key molecules involved in intracellular Ca2+ handling such as RyR, SERCA2a, and PLN. Controlling these molecular functions by different agents have been found to be beneficial in some experimental conditions.
Keywords:Calcium  Heart diseases  Plasma membrane  Sarco(endo)plasmic reticulum  Signal transduction
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号