Illumination Normalization of Face Image Based on Illuminant Direction Estimation and Improved Retinex |
| |
Authors: | Jizheng Yi Xia Mao Lijiang Chen Yuli Xue Alberto Rovetta Catalin-Daniel Caleanu |
| |
Affiliation: | 1. School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China.; 2. Department of Mechanics, Polytechnic University of Milan, Milan, 20156, Italy.; 3. Applied Electronics Department, University POLITEHNICA Timisoara, Timisoara, 300223, Romania.; Leibniz Institute for Age Research, GERMANY, |
| |
Abstract: | Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques. |
| |
Keywords: | |
|
|