首页 | 本学科首页   官方微博 | 高级检索  
     


Relative contribution of ruminal buffering systems to pH regulation in feedlot cattle fed either low- or high-forage diets
Affiliation:1. Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Canada, AB T1J 4B1;2. Department of Animal Poultry Science, University of Saskatchewan, Saskatoon, Canada, SK S7N 5A8
Abstract:The relative contribution of ruminal short-chain fatty acid (SCFA) absorption and salivary buffering to pH regulation could potentially change under different dietary conditions. Therefore, the objective of this study was to investigate the effects of altering the ruminal supply of rapidly fermentable carbohydrate (CHO) on absorptive function and salivation in beef cattle. Eight heifers (mean BW±SD=410±14 kg) were randomly allocated to two treatments in a crossover design with 37-day periods. Dietary treatments were barley silage at 30% low forage (LF) or 70% high forage (HF) of dietary dry matter (DM), with the remainder of the diet consisting of barley grain (65% or 25% on a DM basis) and a constant level (5%) of supplement. The LF and HF diets contained 45.3% and 30.9% starch, and 4.1% and 14.0% physically effective fiber (DM basis), respectively. Ruminal pH was continuously measured from day 17 to day 23, whereas ruminal fluid was collected on day 23 to determine SCFA concentration. Ruminal liquid passage rate was determined on day 23 using Cr-ethylenediaminetetraacetic acid. Eating or resting salivation was measured by collecting masticate (days 28 and 29) or saliva samples (days 30 and 31) at the cardia, respectively. On days 30 and 31, the temporarily isolated and washed reticulo-rumen technique was used to measure total, and Cl-competitive (an indirect measure of protein-mediated transport) absorption of acetate, propionate and butyrate. As a result of the higher dietary starch content and DM intake, the ruminal supply of rapidly fermentable CHO, total ruminal SCFA concentration (118 v. 95 mM; P<0.001) and osmolality (330 v. 306 mOsm/kg; P=0.018) were greater in cattle fed LF compared with HF. In addition, feeding LF resulted in a longer duration (2.50 v. 0.09 h/day; P=0.02) and a larger area (0.44 v. 0.01 (pH×h)/day; P=0.050) that pH was below 5.5. There was no diet effect on total and Cl-competitive absorption (mmol/h and %/h) of acetate, propionate, butyrate and total SCFA (acetate+propionate+butyrate), but eating salivation was less (131 v. 152 ml/min; P=0.02), and resting salivation tended to be less (87 v. 104 ml/min; P=0.10) in cattle fed an LF diet. In summary, lower ruminal pH in cattle with greater rapidly fermentable CHO intake was attributed to an increase in SCFA production and decrease in salivation, which were not compensated for by an increase in epithelial permeability.
Keywords:beef cattle  ruminal fermentable carbohydrate supply  short-chain fatty acid absorption  saliva production  ruminal pH
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号