首页 | 本学科首页   官方微博 | 高级检索  
     

一种厌氧真菌共培养甲烷菌株的分离及其甲烷生产特性解析
引用本文:李与琦,薛义涵,郭子琦,李凤鸣,李晓斌,朱伟云,成艳芬. 一种厌氧真菌共培养甲烷菌株的分离及其甲烷生产特性解析[J]. 微生物学通报, 2023, 50(6): 2422-2435
作者姓名:李与琦  薛义涵  郭子琦  李凤鸣  李晓斌  朱伟云  成艳芬
作者单位:南京农业大学 国家动物消化道营养国际联合研究中心 消化道微生物研究室, 江苏 南京 210095;新疆农业大学动物科学学院, 新疆 乌鲁木齐 830052
基金项目:国家自然科学基金(32061143034);中央高校基本科研业务费(KYYJ202003)
摘    要:【背景】开发生物甲烷资源是减轻化石燃料供求紧张的有效措施,而秸秆类原料的预处理及甲烷生产方法需要不断创新,从而进一步满足可持续发展。厌氧真菌与甲烷菌共培养能够通过假根侵入及纤维降解酶双重预处理秸秆并生产甲烷,但目前全世界被报道的骆驼胃肠道来源的厌氧真菌分离培养物仅有1株。【目的】从新疆准噶尔双峰驼瘤胃内容物中分离出新型厌氧真菌和甲烷菌共培养物,研究其在降解秸秆并联合生产生物甲烷方面的应用潜力。【方法】采用Hungate滚管纯化技术将从骆驼胃肠道中分离的厌氧真菌和甲烷菌共培养,对其进行形态学及分子学鉴定,随后厌氧发酵5种底物(稻秸、芦苇、构树叶、苜蓿秆和草木樨),研究产甲烷量、降解效果及主要代谢产物等方面的特性。【结果】筛选到的共培养物中的厌氧真菌为Oontomyces sp. CR1,甲烷菌为Methanobrevibacter sp. CR1。其在降解稻秸时表现出最高的木聚糖酶酶活力(21.64 IU/mL)及甲烷产量(143.39 mL/g-DM),甲烷生产特性较分离自其他动物宿主的厌氧真菌共培养物更优。【结论】共培养厌氧真菌与甲烷菌菌株CR1是一种新型高效降解菌株资源,其在利用木质纤维素生物质生产生物甲烷方面具有良好的应用前景。

关 键 词:双峰驼  厌氧真菌  共培养  甲烷菌  生物甲烷
收稿时间:2022-08-24

Isolation and biomethane production characterization of a novel co-culture of anaerobic fungus and methanogen
LI Yuqi,XUE Yihan,GUO Ziqi,LI Fengming,LI Xiaobin,ZHU Weiyun,CHENG Yanfen. Isolation and biomethane production characterization of a novel co-culture of anaerobic fungus and methanogen[J]. Microbiology China, 2023, 50(6): 2422-2435
Authors:LI Yuqi  XUE Yihan  GUO Ziqi  LI Fengming  LI Xiaobin  ZHU Weiyun  CHENG Yanfen
Affiliation:Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China;College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
Abstract:[Background] Exploiting biomethane resources is an effective way to alleviate the shortage of fossil fuel supply nowadays. At the same time, the methods of lignocellulosic biomass pretreatment and methane production need to be innovated for sustainable development. The co-cultivation of anaerobic fungi and methanogens enables dual pretreatment of lignocellulosic biomass and methane production by rhizoid invasion and fiber-degrading enzymes. However, only one culture of anaerobic fungi isolated from camel gut has been reported in the world. [Objective] To isolate and identify the novel co-culture of anaerobic fungus and methanogen from the rumen contents of Xinjiang Bactrian camels, and investigate its application potential in degrading lignocellulosic biomass and producing biomethane. [Methods] The co-culture of anaerobic fungus and methanogen was isolated by Hungate rolling-tube technique from camel gastrointestinal tract and then identified based on the morphological and molecular characteristics. Further, the biomethane production, degradation efficiency, and primary metabolites of the co-culure were determined by anaerobic fermentation with five substrates (rice straw, reed, Broussonetia papyrifera leaves, alfalfa stalk, and Melilotus officinalis). [Results] The co-culture CR1 of anaerobic fungus and methanogen was composed of Oontomyces sp. CR1 and Methanobrevibacter sp. CR1, which had high xylanase activity (21.64 IU/mL) and biomethane production (143.39 mL/g-DM) when degrading rice straw. Furthermore, CR1 had better methane production property than the anaerobic fungal co-cultures isolated from other animals. [Conclusion] The co-culture CR1 of anaerobic fungus and methanogen is a novel degrading strain with high efficiency, which has a promising application prospect in the production of biomethane from lignocellulosic biomass.
Keywords:Bactrian camel  anaerobic fungi  co-cultures  methanogens  biomethane
点击此处可从《微生物学通报》浏览原始摘要信息
点击此处可从《微生物学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号