首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders
Affiliation:1. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia;2. Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh, Saudi Arabia;3. Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Abstract:BackgroundThe balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models.Scope of reviewRedox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs.Major conclusionsDirect interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction.General significanceThe usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号