首页 | 本学科首页   官方微博 | 高级检索  
     


Acclimation to temperature of the response of photosynthesis to increased carbon dioxide concentration in Taraxacum officinale
Authors:James A. Bunce
Affiliation:(1) Climate Stress Laboratory, USDA-ARS, Beltsville Agricultural Research Center, 10300 Baltimore Ave., Beltsville, MD 20705-2350, USA
Abstract:The relative stimulation of photosynthesis by elevated carbon dioxide in C3 species normally increases strongly with increasing temperature. This results from the kinetic characteristics of Rubisco, and has potentially important implications for responses of vegetation to increasing atmospheric carbon dioxide. It is often assumed that because Rubisco characteristics are conservative, all C3 species have the same temperature dependence of the response of photosynthesis to elevated carbon dioxide. However, in this field study of Taraxacum officinale, there were no significant differences in the relative stimulation of photosynthesis by elevated carbon dioxide among days with temperatures ranging from 15 to 34 °C. Nevertheless, short-term measurements indicated a strong temperature dependence of the stimulation. This suggested that acclimation to temperature caused the lack of variation in the seasonal data. Experiments in controlled environments indicated that complete acclimation of the relative stimulation of photosynthesis by elevated carbon dioxide occurred for growth temperatures of 10 – 25 °C. The apparent specificity of Rubisco for carbon dioxide relative to oxygen at 15 °C, as assayed in vivo by measurements of the carbon dioxide concentration at which carboxylation equalled oxygenation, also varied with growth temperature. Changes in the apparent specificity of Rubisco accounted for the acclimation of the temperature dependence of the relative stimulation of photosynthesis by elevated carbon dioxide. It is premature to conclude that low temperatures will necessarily reduce the relative stimulation of photosynthesis caused by rising atmospheric carbon dioxide. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:global change  global warming  photosynthesis models  Rubisco
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号