Biology of the polyploid geophyte Allium oleraceum (Amaryllidaceae): Variation in size,sexual and asexual reproduction and germination within and between tetra-, penta- and hexaploid cytotypes |
| |
Authors: | Martina Fialová ,Michaela Jandová Jiří Ohryzek,Martin Duchoslav |
| |
Affiliation: | Plant Biosystematics and Ecology RG, Department of Botany, Faculty of Science, Palacký University, Šlechtitel? 11, CZ 783 71 Olomouc, Czech Republic |
| |
Abstract: | It has been proposed that plant species cytotypes commonly exhibit altered morphology, reproduction, geographic and ecological distributions. We studied phenotypic variation in height, sexual (flowers, seeds) and asexual (aerial bulbils) reproduction in natural populations and in the conditions of a common garden of three cytotypes (2n = 4x, 5x, 6x) of the bulbous geophyte Allium oleraceum in the Czech Republic. Additionally, we compared the germination and dormancy of seeds and bulbils to determine whether propagules have different ecological roles. The pattern of morphological differentiation observed between cytotypes under natural conditions was similar to that observed under common garden conditions, suggesting that variability in morphological characteristics appears to be associated with ploidy levels. We revealed differences in size and sexual and asexual production between A. oleraceum cytotypes, but with wide overlap among cytotypes, suggesting a limited possibility of the studied traits to reliably distinguish between cytotypes. Tetraploids and pentaploids were rather similar; they were taller and produced more flowers than hexaploids, which were mostly flowerless (mean <0.7 flower/plant). All cytotypes were able to produce viable seeds, but their numbers were extremely low, usually less than 3 seeds per inflorescence; clonal reproduction via aerial bulbils dominates in all cytotypes (flower:bulbil ratio <0.5), with tetraploids producing more but lighter bulbils than other cytotypes. The seed: ovule ratio was low (<0.1) in all cytotypes, although hexaploids reached higher values than other cytotypes. Bulbils germinated better (means >80%) than seeds in all cytotypes, with pentaploid bulbils showing the highest germination (mean 90.5%). The cytotypes did not differ in seed germination (range of means 73.4%–76.3%). About 6% of seeds did not germinate but were still viable at the end of the experiment, while all non-germinated bulbils of all cytotypes had rotten away. Seeds, but not bulbils, can likely form a short-term persistent propagule soil bank. We found no evidence of a phenotypic trade-off between the production of flowers (seeds) and the production of bulbils within the inflorescence of all studied cytotypes. Together, inter-cytotypic differences in fitness-related traits cannot completely explain the different geographic and ecological distributions of cytotypes in the Czech Republic found by previous research. |
| |
Keywords: | Polyploidy Reproductive ecology Bulbils Trade-off Phenotypic correlation Seeds |
本文献已被 ScienceDirect 等数据库收录! |
|