Dopamine and nicotine,but not serotonin,modulate the crustacean ventilatory pattern generator |
| |
Authors: | K. P. Rajashekhar J. L. Wilkens |
| |
Abstract: | Dopamine (DA) causes a dose-dependent increase in the frequency of motor neuron bursts [virtual ventilation (fR)] produced by deafferented crab ventilatory pattern generators (CPGv). Domperidone, a D2-specific DA antagonist, by itself reversibly depresses fR and also blocks the stimulatory effects of DA. Serotonin (5HT) has no direct effects on this CPGv. Nicotine also causes dramatic dose-dependent increases in the frequency of motor bursts from the CPGv. The action is triphasic, beginning with an initial reversal of burst pattern typical of reversed-mode ventilation, followed by a 2- to 3-min period of depression and then a long period of elevated burst rate. Acetylcholine chloride (ACh) alone is ineffective, but in the presence of eserine is moderately stimulatory. The inhibitory effects of nicotine are only partially blocked by curare. The excitatory action of nicotine is blocked by prior perfusion of domperidone, but not by SKF-83566.HCl, a D1-specific DA antagonist. SKF-83566 had no effects on the ongoing pattern of firing. These observations support the hypothesis that dopaminergic pathways are involved in the maintenance of the CPGv rhythm and that the acceleratory effects of nicotine may involve release of DA either directly or via stimulation of atypical ACh receptors at intraganglionic sites. © 1992 John Wiley & Sons, Inc. |
| |
Keywords: | acetylcholine central pattern generator Crustacea dopamine domperidone nicotine serotonin d-tubocurarine ventilation |
|
|