首页 | 本学科首页   官方微博 | 高级检索  
     


Sodium-dependent inhibition of the epithelial sodium channel by an arginyl-specific reagent
Authors:H Garty  O Yeger  C Asher
Affiliation:Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel.
Abstract:Effects of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO) on the epithelial Na+ channel were evaluated by measuring the amiloride-blockable 22Na+ fluxes in membrane vesicles derived from the toad bladder epithelium. Incubating whole cells or isolated membranes with PGO readily and irreversibly blocked the channel-mediated tracer flux. Na+ ions present during the interaction of membranes with PGO could protect channels from inactivation by PGO. This effect required the presence of Na+ at the luminal side of the membrane and was characterized by an IC50 of 79 mM Na+. Amiloride, too, could desensitize channels to PGO, but its effect was significant only when whole cells were interacted with the protein-modifying reagent. The data are compatible with a model in which the conductive path of the channel contains a functional arginine, possibly forming a salt bridge with a carboxylic group, which is involved in Na+ translocation and amiloride binding. It was also shown that the augmentation of transport induced by incubating whole cells in Ca2+-free solution (Garty, H., and Asher, C. (1985) J. Biol. Chem. 260, 8330-8335) involves the activation or recruitment of channels that are not vulnerable to PGO prior to incubation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号