首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein--DNA complexes
Authors:Hamon Loïc  Pastré David  Dupaigne Pauline  Le Breton Cyrille  Le Cam Eric  Piétrement Olivier
Institution:Laboratoire de Structure et Activité des Biomolécules Normales et Pathologiques, INSERM U829, Université d'Evry-Val d'Essonne EA3637, Evry, F-91025, France. loic.hamon@univ-evry.fr
Abstract:DNA in living cells is generally processed via the generation and the protection of single-stranded DNA involving the binding of ssDNA-binding proteins (SSBs). The studies of SSB-binding mode transition and cooperativity are therefore critical to many cellular processes like DNA repair and replication. However, only a few atomic force microscopy (AFM) investigations of ssDNA nucleoprotein filaments have been conducted so far. The point is that adsorption of ssDN A-SSB complexes on mica, necessary for AFM imaging, is not an easy task. Here, we addressed this issue by using spermidine as a binding agent. This trivalent cation induces a stronger adsorption on mica than divalent cations, which are commonly used by AFM users but are ineffective in the adsorption of ssDNA-SSB complexes. At low spermidine concentration (<0.3 mM), we obtained AFM images of ssDNA-SSB complexes (E. coli SSB, gp32 and yRPA) on mica at both low and high ionic strengths. In addition, partially or fully saturated nucleoprotein filaments were studied at various monovalent salt concentrations thus allowing the observation of SSB-binding mode transition. In association with conventional biochemical techniques, this work should make it possible to study the dynamics of DNA processes involving DNA-SSB complexes as intermediates by AFM.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号