首页 | 本学科首页   官方微博 | 高级检索  
     


Validation of a biodynamic model of pushing and pulling.
Authors:R O Andres  D B Chaffin
Affiliation:Department of Exercise Science, University of Massachusetts, Amherst 01003.
Abstract:Pushing and pulling during manual material handling can increase the compressive forces on the lumbar disc region while creating high shear forces at the shoe-floor interface. A sagittal plane dynamic model derived from previous biomechanical models was developed to predict L5/S1 compressive force and required coefficients of friction during dynamic cart pushing and pulling. Before these predictions could be interpreted, however, it was necessary to validate model predictions against independently measured values of comparable quantities. This experiment used subjects of disparate stature and body mass, while task factors such as cart resistance and walking speed were varied. Predicted ground reaction forces were compared with those measured by a force platform, with correlations up to 0.67. Predicted erector spinae and rectus abdominus muscle forces were compared with muscle forces derived from RMS-EMGs of the respective muscle groups, using a static force build-up regression relationship to transform the dynamic RMS-EMGs to trunk muscle forces. Although correlations were low, this was attributed in part to the use of surface EMG on subjects of widely varied body mass. The biodynamic model holds promise as a tool for analysis of actual industrial pushing and pulling tasks, when carefully applied.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号