Effect of calcium on kinetic and structural aspects of dilution-induced micellar to lamellar phase transformation in phosphatidylcholine-cholate mixtures |
| |
Authors: | S Almog D Lichtenberg |
| |
Affiliation: | Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel. |
| |
Abstract: | Previously, we have shown [Almog, S., Kushnir, T., Nir, S., & Lichtenberg, D. (1986) Biochemistry 25, 2597-2605] that the distribution of cholate between phosphatidylcholine (PC) vesicles and aqueous media apparently obeys a single distribution coefficient, K. In PC-cholate mixed micellar systems, the monomer concentration does not rise much above the cholate's critical micelle concentration (cmc). Consequently, for vesicular systems, the cholate:PC molar ratio in the mixed aggregates (Re) is given by Re = [cholate]/([PC] + 1/K) whereas for mixed micellar systems Re = ([cholate] - cmc)/[PC]. Dilution of mixed micellar systems results in a decrease of Re, due to an increase in the fraction of monomeric PC. If the decrease in Re is to values lower than 0.3, micellar to lamellar transformation occurs. This process involves a sequence of three steps, namely, micellar equilibration followed by vesiculation and subsequent vesicle size growth via a lipid transfer mechanism. The ultimate size of the resultant vesicles is an increasing function of Re. This work is devoted to the effect of calcium on the dilution-induced vesicle formation. Its major findings and conclusions are as follows: (i) Calcium reduces the cmc of the detergent and raises its distribution coefficient between PC vesicles and the aqueous medium. Thus, for any given cholate and PC concentrations, calcium causes an increase of Re. (ii) The rate of all the steps which ultimately lead to an apparent equilibrium vesicle size distribution increases dramatically with increasing calcium concentration. Thus, equilibration is attained in seconds to minutes rather than many hours required in the absence of calcium.(ABSTRACT TRUNCATED AT 250 WORDS) |
| |
Keywords: | |
|
|