首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of a tartaric acid derived polymeric MRI contrast agent to a small molecule model chelate
Authors:Lucas Robie L  Benjamin Michael  Reineke Theresa M
Institution:Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA.
Abstract:Contrast agents with high relaxivity are needed to increase the sensitivity of magnetic resonance imaging (MRI) for novel clinical and research applications. For this reason, polymeric structures containing multiple Gd(III) chelates are of current interest. Described in this communication are the syntheses and characterization of a glycopolymer derived from L-tartaric acid, Gd 4(H2O), as well as a low molecular weight compound, Gd 10(H2O), that models the Gd(III) chelate structure in the repeat unit of polymer Gd 4(H2O). Luminescence lifetime measurements in H2O and D2O for Eu(III) analogues of Gd 4(H2O) and Gd 10(H2O) named Eu 4(H2O) and Eu 10(H2O)] reveal that the lanthanide in both structures likely has one water ligand in the primary coordination sphere. The relaxivity of the model chelate Gd 10(H 2O) at 400 MHz and 310 K was determined to be 4.7 mmol (-1).s (-1), representing a nearly 50% increase over Magnevist (3.2 mmol (-1).s (-1)). Relaxivity values on a per Gd basis for the polymeric structure Gd 4(H2O) prepared at two degrees of polymerization, n = 12 and 19, are similar, but slightly lower than Gd 10(H2O) (4.4 mmol (-1).s (-1) and 4.5 mmol (-1).s (-1), respectively). However, their molecular relaxivities of 51 mmol (-1).s (-1) and 80 mmol (-1).s (-1), respectively, provide a substantial increase over that of Magnevist.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号