首页 | 本学科首页   官方微博 | 高级检索  
     


Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization
Authors:Winter Kai-Uwe  Weiser Christof  Kaufmann Kerstin  Bohne Arend  Kirchner Charlotte  Kanno Akira  Saedler Heinz  Theissen Günter
Affiliation:Max-Planck-Institut für Züchtungsforschung, Abteilung Molekulare Pflanzengenetik, Carl-von-Linné-Weg 10, D-50829 K?ln, Germany.
Abstract:The class B floral homeotic genes from the higher eudicot model systems Arabidopsis and Antirrhinum are involved in specifying the identity of petals and stamens during flower development. These genes exist in two different types termed DEF- and GLO-like genes. The proteins encoded by the class B genes are stable and functional in the cell only as heterodimeric complexes of a DEF- and a GLO-like protein. In line with this, heterodimerization is obligate for DNA binding in vitro. The genes whose products have to heterodimerize to be stable and functional are each other's closest relatives within their genomes. This suggests that the respective genes originated by gene duplication, and that heterodimerization is of relative recent origin and evolved from homodimerization. To test this hypothesis we have investigated the dimerization behavior of putative B proteins from phylogenetic informative taxa, employing electrophoretic mobility shift assays and the yeast two-hybrid system. We find that an ancestral B protein from the gymnosperm Gnetum gnemon binds DNA in a sequence-specific manner as a homodimer. Of the two types of B proteins from the monocot Lilium regale, the GLO-like protein is still able to homodimerize, whereas the DEF-like protein binds to DNA only as a heterodimeric complex with the GLO-like protein. These data suggest that heterodimerization evolved in two steps after a gene duplication that gave rise to DEF- and GLO-like genes. Heterodimerization may have originated after the gymnosperm-angiosperm split about 300 MYA but before the monocot-eudicot split 140-200 MYA. Heterodimerization may have become obligate for both types of flowering plant B proteins in the eudicot lineage after the monocot-eudicot split.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号