首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular evolution of ankyrin: gain of function in vertebrates by acquisition of an obscurin/titin-binding-related domain
Authors:Hopitzan Alexander A  Baines Anthony J  Kordeli Ekaterini
Affiliation:Institut Jacques Monod/CNRS/Universités Paris VI et VII, Paris, France.
Abstract:Ankyrins form a family of modular adaptor proteins that link between integral membrane proteins and the cytoskeleton. They evolved within the Metazoa as an adaptation for organizing membrane microstructure and directing membrane traffic. Molecular cloning has identified one Caenorhabditis elegans (unc-44), two Drosophila (Dank1, Dank2), and three mammalian (Ank1, Ank2, Ank3) genes. We have previously identified a 76-amino acid (aa) alternatively spliced sequence that is present in muscle polypeptides encoded by the rat Ank3 gene. A closely related sequence in a muscle Ank1 product binds the cytoskeletal muscle proteins obscurin and titin. This obscurin/titin-binding-related domain (OTBD) contains repeated modules of 18 aa: three are encoded by Ank1 and Ank2, two by Ank3; this pattern is conserved throughout vertebrate ankyrin genes. The C. elegans ankyrin, UNC-44, contains one 18-aa module as does the ankyrin gene in the urochordate Ciona intestinalis, but the insect ankyrins contain none. Our data indicate that an ancestral ankyrin acquired an 18-aa module which was preserved in the Ecdysozoa/deuterostome divide, but it was subsequently lost from arthropods. Successive duplications of the module led to a gain of function in vertebrates as it acquired obscurin/titin-binding activity. We suggest that the OTBD represents an adaptation of the cytoskeleton that confers muscle cells with resilience to the forces associated with vertebrate life.
Keywords:ankyrin    AnkG107    striated muscle    module    titin    obscurin
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号