首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The katE gene, which encodes the catalase HPII of Mycobacterium avium
Authors:A Milano  E De  Rossi  L Gusberti  B Heym  P Marone  G Riccardi
Institution:Dipartimento di Genetica e Microbiologia, Universitàdegli Studi di Pavia, via Abbiategrasso 207, 27100 Pavia, Italy.;Laboratoire de Génétique Moléculaire Bactérienne, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.;Clinica Malattie Infettive, Policlinico San Matteo, 27100 Pavia, Italy.
Abstract:Disseminated Mycobacterium avium-Mycobacterium intracellular disease is a prevalent opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). These pathogens are generally resistant to isoniazid (INH), a powerful antituberculosis drug. It is now generally accepted that the INH susceptibility of Mycobacterium tuberculosis results from the transformation of the drug into a toxic derivative, as a result of the action of the enzyme catalase-peroxidase (HPI), encoded by the katG gene. It has been speculated that the presence of a second catalase (HPII) in some mycobacterial species, but lacking in M. tuberculosis, may impair the action of INH. In this report, the nucleotide sequence of the M. avium katE gene, encoding catalase HPII, is described. This enzyme shows strong similarity to Escherichia coli catalase HPII and eukaryotic catalases. All amino acids previously postulated as participating directly in catalysis by liver catalase and most of the amino acids binding the prosthetic group are conserved in M. avium catalase HPII. The enzyme is expressed in E. coli and is inhibited by 3-amino -l,2,4 triazole (AT). Furthermore, Southern blot hybridizations and polymerase chain reaction experiments demonstrate the distribution of katE gene in several mycobacterial species. To evaluate the potentially antagonistic effect of HPII catalase on INH susceptibility, the katE gene was transformed into M. tuberculosis H37Rv and the minimum inhibitory concentration (MIC) for INH was determined. Despite strong expression of the katEgene, no change in MIC was observed, thus ruling out a possible contribution of this enzyme to the natural resistance of M. avium to the drug. The availability of the gene probe, encoding the second mycobacterial catalase HPII, should open the way for the development of new drugs and diagnostic tests to combat drug-resistant pathogen strains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号