首页 | 本学科首页   官方微博 | 高级检索  
     


H bonding at the helix-bundle crossing controls gating in Kir potassium channels
Authors:Rapedius Markus  Fowler Philip W  Shang Lijun  Sansom Mark S P  Tucker Stephen J  Baukrowitz Thomas
Affiliation:Institute of Physiology II, Friedrich Schiller University, D-07743 Jena, Germany.
Abstract:Specific stimuli such as intracellular H+ and phosphoinositides (e.g., PIP2) gate inwardly rectifying potassium (Kir) channels by controlling the reversible transition between the closed and open states. This gating mechanism underlies many aspects of Kir channel physiology and pathophysiology; however, its structural basis is not well understood. Here, we demonstrate that H+ and PIP2 use a conserved gating mechanism defined by similar structural changes in the transmembrane (TM) helices and the selectivity filter. Our data support a model in which the gating motion of the TM helices is controlled by an intrasubunit hydrogen bond between TM1 and TM2 at the helix-bundle crossing, and we show that this defines a common gating motif in the Kir channel superfamily. Furthermore, we show that this proposed H-bonding interaction determines Kir channel pH sensitivity, pH and PIP2 gating kinetics, as well as a K+-dependent inactivation process at the selectivity filter and therefore many of the key regulatory mechanisms of Kir channel physiology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号