首页 | 本学科首页   官方微博 | 高级检索  
     


Chromosome Dynamics during Mitosis
Authors:Tatsuya Hirano
Affiliation:Chromosome Dynamics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
Abstract:The primary goal of mitosis is to partition duplicated chromosomes into daughter cells. Eukaryotic chromosomes are equipped with two distinct classes of intrinsic machineries, cohesin and condensins, that ensure their faithful segregation during mitosis. Cohesin holds sister chromatids together immediately after their synthesis during S phase until the establishment of bipolar attachments to the mitotic spindle in metaphase. Condensins, on the other hand, attempt to “resolve” sister chromatids by counteracting cohesin. The products of the balancing acts of cohesin and condensins are metaphase chromosomes, in which two rod-shaped chromatids are connected primarily at the centromere. In anaphase, this connection is released by the action of separase that proteolytically cleaves the remaining population of cohesin. Recent studies uncover how this series of events might be mechanistically coupled with each other and intricately regulated by a number of regulatory factors.In eukaryotic cells, genomic DNA is packaged into chromatin and stored in the cell nucleus, in which essential chromosomal processes, including DNA replication and gene expression, take place (Fig. 1, interphase). At the onset of mitosis, the nuclear envelope breaks down and chromatin is progressively converted into a discrete set of rod-shaped structures known as metaphase chromosomes (Fig. 1, metaphase). In each chromosome, a pair of sister kinetochores assembles at its centromeric region, and their bioriented attachment to the mitotic spindle acts as a prerequisite for equal segregation of sister chromatids. The linkage between sister chromatids is dissolved at the onset of anaphase, allowing them to be pulled apart to opposite poles of the cell (Fig. 1, anaphase). At the end of mitosis, the nuclear envelope reassembles around two sets of segregated chromatids, leading to the production of genetically identical daughter cells (Fig. 1, telophase).Open in a separate windowFigure 1.Overview of chromosome dynamics during mitosis. In addition to the crucial role of kinetochore–spindle interactions, an intricate balance between cohesive and resolving forces acting on sister chromatid arms (top left, inset) underlies the process of chromosome segregation. See the text for major events in chromosome segregation.Although the centromere–kinetochore region plays a crucial role in the segregation process, sister chromatid arms also undergo dynamic structural changes to facilitate their own separation. Conceptually, such structural changes are an outcome of two balancing forces, namely, cohesive and resolving forces (Fig. 1, top left, inset). The cohesive force holds a pair of duplicated arms until proper timing of separation, otherwise daughter cells would receive too many or too few copies of chromosomes. The resolving force, on the other hand, counteracts the cohesive force, reorganizing each chromosome into a pair of rod-shaped chromatids. From this standpoint, the pathway of chromosome segregation is regarded as a dynamic process, in which the initially robust cohesive force is gradually weakened and eventually dominated by the resolving force. Almost two decades ago, genetic and biochemical studies for the behavior of mitotic chromosomes converged productively, culminating in the discovery of cohesin (Guacci et al. 1997; Michaelis et al. 1997; Losada et al. 1998) and condensin (Hirano et al. 1997; Sutani et al. 1999), which are responsible for the cohesive and resolving forces, respectively. The subsequent characterizations of these two protein complexes have not only transformed our molecular understanding of chromosome dynamics during mitosis and meiosis, but also provided far-reaching implications in genome stability, as well as unexpected links to human diseases. In this article, I summarize recent progress in our understanding of mitotic chromosome dynamics with a major focus on the regulatory networks surrounding cohesin and condensin. I also discuss emerging topics and attempt to clarify outstanding questions in the field.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号