首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled Porosity Solubility Modulated Osmotic Pump Tablets of Gliclazide
Authors:Arti Banerjee  P. R. P. Verma  Subhash Gore
Affiliation:.Mylan Laboratories Ltd, FDS, R&D Centre, Plot No. 31-34A, Anrich Industrial Estate, Bollaram, Jinnaram (Mandal), Medak District, 502325 Hyderabad, India ;.Birla Institute of Technology, Mesra, Ranchi, India
Abstract:A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc.KEY WORDS: convolution approach, gliclazide, hot melt extrusion (HME), hydroxypropyl cellulose, solid dispersion
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号