首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution
Authors:D. Brent Halling  Sophia A. Kenrick  Austen F. Riggs  Richard W. Aldrich
Affiliation:1.Department of Neuroscience, 2.Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712;3.Wyatt Technology Corporation, Santa Barbara, CA 93117
Abstract:Ca2+ activates SK Ca2+-activated K+ channels through the protein Ca2+ sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca2+ regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca2+ concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca2+, SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca2+, 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca2+, the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca2+ and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca2+ or with CaM in molar excess. In low Ca2+ both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca2+. These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号