首页 | 本学科首页   官方微博 | 高级检索  
     


Up-regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts
Authors:Roy Anju Anne  Nunn Caroline  Ming Hong  Zou Min-Xu  Penninger Josef  Kirshenbaum Lorrie A  Dixon S Jeffrey  Chidiac Peter
Affiliation:Department of Physiology and Pharmacology, Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, the University of Western Ontario, London, Ontario N6A 5C1, Canada.
Abstract:Regulator of G protein signaling (RGS) proteins limit G protein signals. In this study, we investigated the role of RGS2 in the control of G protein signaling cascades in osteoblasts, the cells responsible for bone formation. Expression of RGS2 was up-regulated in primary cultures of mouse calvarial osteoblasts by parathyroid hormone-related peptide (PTHrP)-(1-34), which stimulates G(s) signaling. RGS2 was also up-regulated by extracellular ATP, which selectively activates G(q), as well as by forskolin and phorbol myristate acetate, which activate targets downstream of G(s) and G(q), respectively. To assess the role of endogenous RGS2, we characterized G(s) and G(q) signaling in osteoblasts derived from wild type and rgs2(-/-) mice. Under control conditions, nucleotide-stimulated calcium release, endothelin-stimulated accumulation of inositol phosphates, and PTHrP-stimulated cAMP accumulation were equivalent in osteoblasts isolated from wild type and rgs2(-/-) mice. Thus, basal levels of endogenous RGS2 do not appear to regulate G(s) or G(q) signaling in osteoblasts. Interestingly, forskolin treatment of wild type but not rgs2(-/-) osteoblasts suppressed both endothelin-stimulated accumulation of inositol phosphates and nucleotide-stimulated calcium release, indicating that up-regulation of RGS2 by G(s) signaling desensitizes G(q) signals. Furthermore, pretreatment with ATP suppressed PTHrP-dependent cAMP accumulation in wild type but not rgs2(-/-) osteoblasts, implying that up-regulation of RGS2 by G(q) signaling desensitizes G(s) signals. Our findings demonstrate that endogenously expressed RGS2 can limit G(s) signaling. Moreover, up-regulation of RGS2 contributes to cross-desensitization of G(s)- and G(q)-coupled signals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号