A potential regulatory network among WDR86-AS1, miR-10b-3p,and LITAF is possibly involved in preeclampsia pathogenesis |
| |
Affiliation: | 3. University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, Ribeirão Preto, São Paulo, Brazil |
| |
Abstract: | Preeclampsia (PE), a pregnancy-specific disorder, is a leading cause of perinatal maternal and fetal mortality and morbidity. Impaired migration and invasion of trophoblastic cells and an imbalanced systemic maternal inflammatory response have been proposed as possible causes of pathogenesis of PE. Comparative analysis of PE-affected placentas and healthy placentas has uncovered differentially expressed long noncoding RNAs, microRNAs, and mRNAs. This study was conducted to investigate the effect of a regulatory network among these RNAs on PE pathogenesis. Long noncoding RNA WDR86-AS1, microRNA miR-10b-3p, and mRNA of protein LITAF were identified by screening of genes in existing databases with aberrant expression in PE-affected placentas and potential mutual interactions as revealed by TargetScan, miRanda, and PicTar analyses. This study identified their expression in PE-affected and healthy placentas by RT-PCR. An in vitro experiment was performed on human trophoblast HTR-8/SVneo cells cultured under normoxic or hypoxic conditions. MiR-10b-3p targets were identified in luciferase reporter assays and RNA pull-down assays. The mouse model of PE was set up using a soluble form of FLT-1 for in vivo testing. Lower levels of miR-10b-3p but higher expression of WDR86-AS1 and LITAF were observed in PE-affected placentas and trophoblast cells under hypoxia. WDR86-AS1 and LITAF mRNA were confirmed as targets of miR-10b-3p. WDR86-AS1 downregulated miR-10b-3p but promoted LITAF expression. Microarray analyses revealed that LITAF controlled the inflammatory responses and migration and proliferation of HTR-8/SVneo cells under hypoxia. Indeed, knockdown of WDR86-AS1 and LITAF or overexpression of miR-10b-3p attenuated the hypoxia-induced inhibition of cellular viability, migration, and invasion. Moreover, miR-10b-3p overexpression attenuated the pathological symptoms caused by soluble FLT-1 in vivo. In summary, the WDR86-AS1/miR-10b-3p/LITAF network is probably involved in PE pathogenesis. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|