Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer |
| |
Authors: | Ute Mischke Brigitte Nixdorf |
| |
Affiliation: | 1. Dept. of Shallow Lakes and Lowland Rivers, IGB, Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587, Berlin, Germany 2. Brandenburg Technical University of Cottbus, Seestra?e 45, D, -15526, Bad Saarow
|
| |
Abstract: | In 2000, a field study in two shallow, polytrophic lakes (Langer See and Melangsee) in eastern Germany revealed an equilibrium state assemblage of Cyanoprokaryota in late summer. During 4 successive weeks in Langer See Planktothrix agardhii (Gom.) Anagn. et Kom., Aphanizomenon gracile (Lemmerm.) Lemmerm. and Pseudanabaena limnetica Lemmerm. were more than 80% of the standing biomass of phytoplankton, and their cumulative biovolume was around 33 mm3 l?1 ((±3.2 SD). In Melangsee, the very small Limnothrix species L. amphigranulata (Van Goor) Meffert was the most common species, accompanied by Pseudanabaena limnetica and Planktothrix agardhii. For 3 weeks, their cumulative biovolume was about 23 mm3 l?1 ((±3.4 SD), which represented 75 – 82% of total biovolume. The dominant species all belong to the functional group S1 defined by Reynolds (1997), except for A. gracile, which we suggest to be included in group S N. In both lakes mean light intensities ranged between 2.2 and 8.3 E m?2 d?1. Overall species spectra were very similar in both lakes, but dominance by Limnothrix and by Planktothrix in the respective lakes is observed repeatedly. The success of these species is discussed in the context of the habitat properties in August/September. Summer mixing events represented no disturbances in the sense of Connell (1978), since they do not interrupt the species dominance. More frequent mixing events and higher concentrations of dissolved nitrogen occurred in Langer See than in the more shallow, but wind protected Melangsee. In Langer See light deficient conditions were intensified by an increasing biomass of P. agardhii, and this species probably benefited from nutrient input by more frequent resuspension. The light deficiency also affected the diversity, expressed as Shannon–Wiener Index (H), which was reduced more in lake Langer See (H = 0.51) than in Melangsee (0.74) during steady state periods. Recognizing the important effects of mixing, we suggest an additional variable to describe habitat properties: the number of full mixing days as a proportion of total days of observation should help to discriminate between shallow habitats with intermittent mixing events, and those with more regularly mixing in summer period. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|