首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inversion and isomerization of Asp-58 residue in human alphaA-crystallin from normal aged lenses and cataractous lenses.
Authors:N Fujii  S Matsumoto  K Hiroki  L Takemoto
Institution:Research Reactor Institute, Kyoto University, Sennan, Osaka, Japan. nfujii@hl.rri.kyoto-u.ac.jp
Abstract:We have previously shown that L-Asp-151 in alphaA-crystallin from the human lens is converted to the biologically uncommon D-isomer. This process was not simple racemization, but stereoinversion, accompanied by isomerization to form the beta-Asp residue, such that L-beta-Asp, D-alpha-Asp and D-beta-Asp were formed. The present study shows that Asp-58 of human alphaA-crystallin is also converted to the D-isomer to a high degree to form the same isomers with age. The D/L ratio of beta-Asp-58 in aged normal lens increased to more than 3.0, showing stereoinversion by the 60 year range, then decreased to 1.0 in the 80 year range, while the isomerization of Asp-58 increased in the 80 year range. We also measured inversion and isomerization of the same residue from cataractous and normal human lenses of the 60 year range. The D/L ratio of Asp-58 from cataractous lenses was significantly lower than that from normal lenses, while the isomerization at Asp-58 in cataractous alphaA-crystallin was significantly higher than that of normal alphaA-crystallin. These results indicate that isomerization to the beta isomer of Asp-58 in cataractous alphaA-crystallin increased more than inversion to the D-isomer, suggesting that there are changes in the native structure of alphaA-crystallin in the human cataractous lens.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号