首页 | 本学科首页   官方微博 | 高级检索  
     


Forelimb muscle activity following nerve graft repair of ventral roots in the rat cervical spinal cord
Authors:Chuang Tien-Yow  Huang Ming-Chao  Chen Kuo-Chih  Chang Yue-Cune  Yen Yu-Shu  Lee Liang-Shong  Cheng Henrich
Affiliation:Neurophysiologic Laboratory, Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital and National Yang-Ming University, Taiwan.
Abstract:Current research on the cellular mechanisms of nerve regeneration suggests the application of nerve growth factors at the repair sites to be beneficial. To test the effectiveness of this approach, we performed transections of the C6 and C7 ventral rootlets from their original sites in the spinal cord of 18 rats. We investigated the electrophysiological changes in three groups of rats operated on by different repair strategies. Six rats comprised the control group (G1). In the other 12 rats, 24 rootlets were implanted into the spinal cord by means of an intercostal nerve graft through the pia mater immediately after transection. Six rats (G2) had fibrin glue applied at the incision. The last 6 rats (G3) had grafts with acidic fibroblast growth factor (aFGF) added to the fibrin glue. The rats' functional recovery was evaluated electrophysiologically at 6 weeks and 6 months after the operation. Needle electromyography showed profound fibrillation potentials (Daube's scoring system) in the deltoid, biceps, and triceps of the operated forelimbs in all groups 6 weeks after the operation. After 6 months, there was a significant decrease in the amount of fibrillation potentials in all groups (G1, G2 and G3, p < 0.0001, 0.0001, 0.0009, respectively, generalized estimating equation, repeated measures) and a significantly high probability for motor units present in sampled muscles of G2 and G3 as compared to G1 (log odds ratio in G2 = 51.8316, G3 = 57.4262, generalized estimating equation). We conclude that several cervical roots can regenerate through intercostal nerve grafts applied using fibrin glue. Adding aFGF may increase the efficacy of sprouting.
Keywords:Rats   Regeneration   Electrophysiology   Root avulsion   Nerve growth factor   Nerve graft
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号