首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Multiple potassium channels mediate nitric oxide-induced inhibition of rat vascular smooth muscle cell proliferation.
Authors:Renata S A Costa  Jamil Assreuy
Institution:Department of Pharmacology, UFSC, Campus Universitário, Trindade, Bloco D/CCB, P.O. Box 476, Florianópolis, SC 88049-900, Brazil.
Abstract:Several nitric oxide (NO) effects in the cardiovascular system are mediated by soluble guanylate cyclase (sGC) activation but potassium channels (KC) are also emerging as important effectors of NO actions. We investigated the relationship among vascular smooth muscle cell proliferation, NO, cyclic GMP, and KC using the A7r5 smooth muscle cell line derived from rat aorta. NO donors (two nitrosothiols, S-nitroso-acetyl-d,l-penicillamine, SNAP, and S-nitroso-glutathione, GSNO, and an organic nitrate, glyceryl trinitrate, GTN; 1-1000 microM) dose-dependently inhibited cell proliferation. ODQ (a selective inhibitor of sGC; 0.1 and 1 microM) and KT5823 (a selective inhibitor of cGMP-dependent protein kinase, 1 microM) prevented NO effects, confirming that sGC is a key target. In this report, we show that tetraethylammonium (TEA, a non-selective blocker of KC, 300 microM), and 4-aminopyridine (a selective blocker of voltage-dependent KC, 100 microM) prevented SNAP inhibitory effects on cell proliferation, whereas glibenclamide (a selective blocker of ATP-dependent KC, 1 microM) was ineffective. Iberiotoxin (a selective blocker of high conductance calcium-activated KC, 100 nM), as well charybdotoxin (a blocker of high and intermediate conductance calcium-activated KC, 100 nM) and apamine (a selective blocker of small conductance calcium-activated KC, 100 nM), blocked the antiproliferative effect induced by SNAP. NS1619 (an opener of high conductance calcium-activated KC, 1-100 microM), inhibited cell proliferation. In addition, sub-effective concentrations of ODQ (100 nM) and TEA (10 microM) synergized in blocking SNAP antiproliferative effects. Thus, voltage-dependent and calcium-activated but not ATP-dependent KC appear to have a prominent role, besides sGC activation, in NO-induced inhibition of vascular smooth muscle cell proliferation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号