首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tissue engineering: a new frontier in physiological genomics.
Authors:Matthew C Petersen  Jozef Lazar  Howard J Jacob  Tetsuro Wakatsuki
Institution:Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Abstract:Considerable progress has been made in the last decade in the engineering and construction of a number of artificial tissue types. These constructs are typically viewed from the perspective of possible sources for implant and transplant materials in the clinical arena. However, incorporation of engineered tissues, often referred to as three-dimensional (3D) cell culture, also offers the possibility for significant advancements in research for physiological genomics. These 3D systems more readily mimic the in vivo setting than traditional 2D cell culture, and offer distinct advantages over the in vivo setting for some organ systems. As an example, cardiac cells in 3D culture 1) are more accessible for siRNA studies, 2) can be engineered with specific cell types, and 3) offer the potential for high-throughput screening of gene function. Here the state-of-the-art is reviewed and the applications for engineered tissue in genomics research are proposed. The ability to use engineered tissue in combination with genomics creates a bridge between traditional cellular and in vivo studies that is critical to enabling the transition of genetic information into mechanistic understanding of disease processes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号