首页 | 本学科首页   官方微博 | 高级检索  
     


Biogeographic pattern of living vegetation carbon turnover time in mature forests across continents
Authors:Kailiang Yu  Philippe Ciais  Anthony A. Bloom  Jinsong Wang  Zhihua Liu  Han Y. H. Chen  Yilong Wang  Yizhao Chen  Ashley P. Ballantyne
Affiliation:1. Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCECEA/CNRS/UVSQ Saclay, Gif-sur-Yvette, France;2. Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCECEA/CNRS/UVSQ Saclay, Gif-sur-Yvette, France

The Cyprus Institute, Nicosia, Cyprus;3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;4. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China;5. Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA;6. Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada;7. College of Biology and Environment, Nanjing Forestry University, Nanjing, China;8. Le Laboratoire des Sciences du Climat et de l'Environnement, IPSL-LSCECEA/CNRS/UVSQ Saclay, Gif-sur-Yvette, France

Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA

Abstract:

Aim

Theoretically, woody biomass turnover time ( τ ) quantified using outflux (i.e. tree mortality) predicts biomass dynamics better than using influx (i.e. productivity). This study aims at using forest inventory data to empirically test the outflux approach and generate a spatially explicit understanding of woody τ in mature forests. We further compared woody τ estimates with dynamic global vegetation models (DGVMs) and with a data assimilation product of C stocks and fluxes—CARDAMOM.

Location

Continents.

Time Period

Historic from 1951 to 2018.

Major Taxa Studied

Trees and forests.

Methods

We compared the approaches of using outflux versus influx for estimating woody τ and predicting biomass accumulation rates. We investigated abiotic and biotic drivers of spatial woody τ and generated a spatially explicit map of woody τ at a 0.25-degree resolution across continents using machine learning. We further examined whether six DGVMs and CARDAMOM generally captured the observational pattern of woody τ .

Results

Woody τ quantified by the outflux approach better (with R2 0.4–0.5) predicted the biomass accumulation rates than the influx approach (with R2 0.1–0.4) across continents. We found large spatial variations of woody τ for mature forests, with highest values in temperate forests (98.8 ± 2.6 y) followed by boreal forests (73.9 ± 3.6 y) and tropical forests. The map of woody τ extrapolated from plot data showed higher values in wetter eastern and pacific coast USA, Africa and eastern Amazon. Climate (temperature and aridity index) and vegetation structure (tree density and forest age) were the dominant drivers of woody τ across continents. The highest woody τ in temperate forests was not captured by either DGVMs or CARDAMOM.

Main Conclusions

Our study empirically demonstrated the preference of using outflux over influx to estimate woody τ for predicting biomass accumulation rates. The spatially explicit map of woody τ and the underlying drivers provide valuable information to improve the representation of forest demography and carbon turnover processes in DGVMs.
Keywords:biomass accumulation rates  continents  mature forests  mortality  woody carbon turnover time
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号