首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Global bioregions of reptiles confirm the consistency of bioregionalization processes across vertebrate clades
Authors:Mattia Falaschi  Silvio Marta  Elia Lo Parrino  Uri Roll  Shai Meiri  Gentile Francesco Ficetola
Institution:1. Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy;2. Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University, Beersheba, Israel;3. School of Zoology, & The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
Abstract:

Aim

The identification of biogeographical zones has been fundamental in broadscale biodiversity analyses over the last 150 years. If processes underlying bioregionalization, such as climatic differences, tectonics and physical barriers, are consistent across vertebrate clades, we expect that groups with more similar ecological characteristics would show more similar bioregions. Lack of data has so far hampered the delineation of global bioregions for reptiles. Therefore, we integrated comprehensive geographic distribution and phylogenetic data of lepidosaurian reptiles to delineate global reptile bioregions, compare determinants of biogeographical boundaries across terrestrial vertebrates and test whether clades showing similar responses to environmental factors also show more similar bioregions.

Location

Global.

Time Period

Present.

Major Taxa Studied

Reptiles, amphibians, birds, mammals.

Methods

For reptiles, we used phylogenetic beta diversity to quantify changes in community composition, and hierarchical clustering to identify biogeographic ‘realms’ and ‘regions’. Then, we assessed the determinants of biogeographical boundaries using spatially explicit regression models, testing the effect of climatic factors, physical barriers and tectonics. Bioregions of reptiles were compared to those of other vertebrate clades by testing the overall similarity of the spatial structure of bioregions, and the match of the position of biogeographical boundaries.

Results

For reptiles, we identified 24 evolutionarily unique regions, nested within 14 realms. Biogeographical boundaries of reptiles were related to both climatic factors and past tectonic movements. Bioregions were very consistent across vertebrate clades. Bioregions of reptiles and mammals showed the highest similarity, followed by reptiles/birds and mammals/birds while amphibian bioregions were less similar to those of the other clades.

Main Conclusions

The overall high similarity among bioregions suggests that bioregionalization was affected by similar underlying processes across terrestrial vertebrates. Nevertheless, clades with different eco-physiological characteristics respond somewhat differently to the same environmental factors, resulting in similar but not identical regionalizations across vertebrate clades.
Keywords:biogeographical boundaries  macroecology  phylogenetic beta diversity  squamates  tetrapod biogeography  vertebrates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号