首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reduction by lead of hydrocortisone-induced glycerol phosphate dehydrogenase activity in cultured rat oligodendroglia
Authors:J N Wu  E Tiffany-Castiglioni
Institution:(1) Department of Veterinary Anatomy, Texas A&M University, 77843 College Station, Texas
Abstract:Summary Time- and dose-dependent toxic effects of lead (Pb) acetate on astroglia, oligodendroglia, and meningeal fibroblasts cultured from immature rat brain were measured. Cultures were exposed for 3 d to Pb (1,10, and 100 μM) and then examined immediately (Day 0) or 3 or 10 d after Pb treatment was discontinued. The percentages of astroglia and fibroblasts excluding dye were unaffected by Pb, whereas the percentage of oligodendroglia excluding dye decrease significantly (P<0.01) at all time points after exposure to 100 μM Pb. Lead (100 μM) also reduced the total cell numbers of astroglia, oligodendroglia, and meningeal fibroblasts. Amino acid incorporation into protein by oligodendroglia was stimulated after exposure to 100 μM Pb at all time points and also by 1 and 10 μM on Day 3. Incorporation was stimulated in astroglia only on Day 0 by 10 and 100 μM. Hydrocortisone-stimulated glycerolphosphate dehydrogenase (GPDH) activity was assayed in oligodendroglia cultures. A significant decrease in specific activity was seen after a 4-d exposure to lead. Because oligodendroglia are responsible for myelin synthesis in the central nervous system, and GPDH may synthesize a precursor for myelin lipid synthesis, it was proposed that the hypomyelination observed in lead-intoxicated neonatal rats may result partially from a primary toxic effect on oligodendroglia. GPDH activity was not inhibited by Pb in mixed glial cultures containing both astroglia and oligodendroglia. This result suggests that astroglia in culture have the ability to delay the lead-induced inhibition of oligodendroglial GPDH activity and supports the hypothesis that astroglia in culture serve a protective function. This work was supported by Environmental Protection Agency Grant R811500 and by U. S. Department of Agriculture Project M-6839 Animal Health Formula Funding Project 6652. This work was carried out by J.-N. Wu in partial fulfillment of the requirements for a Master of Science degree in Veterinary Public Health at Texas A&M University.
Keywords:oligodendroglia  lead  glycerol-3-phosphate dehydrogenase  cell culture  lead encephalopathy  astroglia
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号