首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of D-cycloserine action: alanine racemase from Escherichia coli W
Authors:M P Lambert  F C Neuhaus
Abstract:The antibiotic d-cycloserine is an effective inhibitor of alanine racemase. The lack of inhibition by l-cycloserine of alanine racemase from Staphylococcus aureus led Roze and Strominger to formulate the cycloserine hypothesis. This hypothesis states that d-cycloserine has the conformation required of the substrates on the enzyme surface and that l-cycloserine cannot have this conformation. Alanine racemase from Escherichia coli W has been examined to establish whether these observations are a general feature of all alanine racemases. The enzyme (molecular weight = 95,000) has Michaelis-Menten constants of 4.6 x 10(-4)m and 9.7 x 10(-4)m for d- and l-alanine, respectively. The ratio of V(max) in the d- to l-direction is 2.3. The equilibrium constant calculated from the Haldane relationship is 1.11 +/- 0.15. Both d- and l-cycloserine are competitive inhibitors with constants (K(i)) of 6.5 x 10(-4)m and 2.1 x 10(-3)m, respectively. The ratio of K(m)d-alanine to K(i)d-cycloserine is 0.71, and the ratio of K(m)l-alanine to K(i)l-cycloserine is 0.46. Since l-cycloserine is an effective inhibitor, it is concluded that the cycloserine hypothesis does not apply to the enzyme from E. coli W.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号