首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales
Authors:W M G Vansteelant  W Bouten  R H G Klaassen  B J Koks  A E Schlaich  J van Diermen  E E van Loon  J Shamoun‐Baranes
Institution:1. Computational Geo‐ecology, Inst. for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam, Amsterdam, the Netherlands;2. Dutch Montagu's Harrier Foundation, Scheemda, the Netherlands;3. Animal Ecology Group, Centre for Ecological and Evolutionary Studies, Groningen Univ., Groningen, the Netherlands;4. www.boomtop.org;5. Treetop Foundation, Talmastraat, Assen, the Netherlands
Abstract:Given that soaring birds travel faster with supportive winds or in good thermal soaring conditions, we expect weather conditions en route of migration to explain commonly observed regional and seasonal patterns in the performance of soaring migrants. We used GPS‐loggers to track 13 honey buzzards and four Montagu's harriers for two to six migrations each. We determined how tailwinds, crosswinds, boundary layer height (a proxy for thermal convection) and precipitation affected hourly speeds, daily distances and daily mean speeds with linear regression models. Honey buzzards mostly travel by soaring while Montagu's harriers supplement soaring with flapping. Therefore, we expect that performance of harriers will be less affected by weather than for buzzards. Weather conditions explained between 30 and 50% of variation in migration performance of both species. Tailwind had the largest effect on hourly speeds, daily mean speeds and daily travel distances. Honey buzzards travelled significantly faster and farther, and Montagu's harriers non‐significantly faster, under better convective conditions. Honey buzzards travelled at slower speeds and shorter distances in crosswinds, whereas harriers maintained high speeds in crosswinds. Weather conditions varied between regions and seasons, and this variation accounted for nearly all regional and seasonal variation in flight performance. Hourly performance was higher than predicted at times when we suspect birds had switched to intermittent or continuous flapping flight, for example during sea‐crossings. The daily travel distance of Montagu's harriers was determined to a significant extent by their daily travel time, which differed between regions, possibly also due to weather conditions. We conclude with the implications of our work for studies on migration phenology and we suggest an important role for high‐resolution telemetry in understanding migratory behavior across entire migratory journeys.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号