首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optimization of Nanoemulsion Fabrication Using Microfluidization: Role of Surfactant Concentration on Formation and Stability
Authors:Sibel Uluata  Eric A Decker  D Julian McClements
Institution:1.Department of Food Science,University of Massachusetts,Amherst,USA;2.Department of Food Technology,Inonu University,Malatya,Turkey;3.Department of Biochemistry, Faculty of Science,King Abdulaziz University,Jeddah,Saudi Arabia
Abstract:Nanoemulsions have some important potential advantages over conventional emulsions for certain commercial applications due to their optical clarity, high physical stability, and ability to increase the bioavailability of lipophilic bioactives. In this study, the factors influencing droplet size and stability in nanoemulsions fabricated from a hydrocarbon oil and an anionic surfactant were examined. Octadecane oil-in-water nanoemulsions were produced by a high pressure homogenizer (microfluidizer) using sodium dodecyl sulfate (SDS) as a model anionic surfactant. The influence of homogenization pressure, number of passes, and surfactant concentration was examined. The droplet size decreased with increasing homogenization pressure, number of passes, and surfactant concentration. Nanoemulsions with low turbidity and small droplet diameters (≈62 nm) could be produced under optimized conditions. Interestingly, nanoemulsions containing relatively high surfactant levels were highly susceptible to creaming when they were only passed through the homogenizer a few times, which was attributed to depletion flocculation. These results show the importance of optimizing surfactant levels to produce small droplets that are also stable to creaming.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号