首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparative bioelectrochemical analysis of Pseudomonas aeruginosa and Escherichia coli with anaerobic consortia as anodic biocatalyst for biofuel cell application
Authors:Raghavulu S Veer  Sarma P N  Mohan S Venkata
Institution:Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad, India.
Abstract:Aims: To study the bioelectrochemical behaviour of Pseudomonas aeruginosa (MTCC 17702) and Escherichia coli (MTCC 10436) and to assess their potential to act as anodic biocatalyst with the function of anaerobic consortia for microbial (bio) fuel cell (BFC) application. Methods and Results: Three BFCs (single chamber; open‐air cathode; noncatalysed electrodes) were operated simultaneously in acidophilic microenvironments. Pseudomonas aeruginosa (BFCP) showed higher current density (264 mA m?2) followed by mixed culture (BFCM; 166 mA m?2) and E. coli (BFCE; 147 mA m?2). However, total operating period and substrate degradation were relatively found to be effective with mixed culture (58%; 72 h) followed by BFCP (39%; 60 h) and BFCE (31%; 48 h). Higher electron discharge (ED) was observed with Ps. aeruginosa while mixed culture showed the involvement of redox mediators in the ED process. Conclusions: Mixed culture showed to sustain biopotential for longer periods along with a stable ED. The presence of redox signals and high substrate degradation was also evidencing its performance compared to the pure strains studied. This supports the practical utility of mixed culture over the pure cultures for real‐field BFC applications especially while operating with wastewater. Significance and Impact of the Study: This study revealed the efficiency and viability of mixed consortia in comparison with pure strains for microbial (bio) fuel cell applications.
Keywords:anodic biocatalyst  microbial fuel cell  electron discharge  bioelectricity generation capacity  bioelectrochemistry
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号