首页 | 本学科首页   官方微博 | 高级检索  
     


Transport of cadmium across the apical membrane of epithelial cell lines
Authors:Endo Tetsuya
Affiliation:Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757, Ishikari-Tobetsu, Hokkaido 061-0293, Japan. endotty@hoku-iryo.u.aejp
Abstract:Cadmium (Cd) uptake and secretion across the apical membrane of epithelial cells was studied using LLC-PK1 cells cultured on Petri dishes and permeable membranes, respectively. Cd accumulation in cells from the apical medium was decreased by low temperature and metabolic inhibitors. A saturable tendency was observed between initial Cd accumulation and increased concentrations of Cd in the apical medium at 37 degrees C, but not at 4 degrees C. Co-incubation with ZnCl2 or CuCl2 competitively decreased Cd accumulation at 37 degrees C. A decrease in the pH of the apical medium markedly decreased Cd accumulation. Pretreatment of cells with an inorganic anion-exchange inhibitor significantly decreased Cd uptake at pH 7.4 in the presence of bicarbonate, but only marginally in its absence. A decrease in the pH of the apical medium increased the secretory (basolateral-to-apical) transport of Cd, with a concomitant decrease in the cellular accumulation of Cd. Co-incubation with Cd and tetraethylammonium, a typical substrate of the organic cation transporter, decreased Cd transport, with a concomitant increase in cellular Cd accumulation. The uptake and secretion of Cd across the apical membrane appear to be partly mediated via an inorganic anion exchanger and a H+ antiport of the organic cation transport system, respectively. Therefore, a decrease in pH of the apical medium markedly decreases Cd accumulation, possibly as a result of not only the decrease in Cd uptake via an inorganic anion exchanger, but also the increase in Cd secretion via the Cd2+/H+ antiport. Further evidence of the antiport was obtained from experiments using brush border membrane vesicles isolated from rat kidney and small intestine. In addition, passive diffusion of Cd appears to be decreased by low temperature and a decrease in pH.
Keywords:Brush border membrane vesicles  Cadmium  Epithelial cell  Inorganic anion exchanger  pH  Secretion  Transport  Uptake
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号