首页 | 本学科首页   官方微博 | 高级检索  
     


The impact of the 67kDa laminin receptor on both cell-surface binding and anti-allergic action of tea catechins
Authors:Fujimura Yoshinori  Umeda Daisuke  Yamada Koji  Tachibana Hirofumi
Affiliation:a Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
b Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
c Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Abstract:Here, we investigated the structure-activity relationship of major green tea catechins and their corresponding epimers on cell-surface binding and inhibitory effect on histamine release. Galloylated catechins; (−)-epigallocatechin-3-O-gallate (EGCG), (−)-gallocatechin-3-O-gallate (GCG), (−)-epicatechin-3-O-gallate (ECG), and (−)-catechin-3-O-gallate (CG) showed the cell-surface binding to the human basophilic KU812 cells by surface plasmon resonance analysis, but their non-galloylated forms did not. Binding activities of pyrogallol-type catechins (EGCG and GCG) were higher than those of catechol-type catechins (ECG and CG). These patterns were also observed in their inhibitory effects on histamine release. Previously, we have reported that biological activities of EGCG are mediated through the binding to the cell-surface 67 kDa laminin receptor (67LR). Downregulation of 67LR expression caused a reduction of both activities of galloylated catechins. These results suggest that both the galloyl moiety and the B-ring hydroxylation pattern contribute to the exertion of biological activities of tea catechins and their 67LR-dependencies.
Keywords:Structure-activity relationship   Cell-surface binding   Galloylated catechin   EGCG   67   kDa laminin receptor   Allergy   Histamine   Basophil   KU812
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号