首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver
Authors:Reszko Aneta E  Kasumov Takhar  Pierce Bradley A  David France  Hoppel Charles L  Stanley William C  Des Rosiers Christine  Brunengraber Henri
Institution:Department of Biochemistry, Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Abstract:While a number of studies underline the importance of anaplerotic pathways for hepatic biosynthetic functions and cardiac contractile activity, much remains to be learned about the sites and regulation of anaplerosis in these tissues. As part of a study on the regulation of anaplerosis from propionyl-CoA precursors in rat livers and hearts, we investigated the degree of reversibility of the reactions of the propionyl-CoA pathway. Label was introduced into the pathway via NaH13CO3, U-13C3]propionate, or U-13C3]lactate + U-13C3]pyruvate, under various concentrations of propionate. The mass isotopomer distributions of propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA revealed that, in intact livers and hearts, (i) the propionyl-CoA carboxylase reaction is slightly reversible only at low propionyl-CoA flux, (ii) the methylmalonyl-CoA racemase reaction keeps the methylmalonyl-CoA enantiomers in isotopic equilibrium under all conditions tested, and (iii) the methylmalonyl-CoA mutase reaction is reversible, but its reversibility decreases as the flow of propionyl-CoA increases. The thermodynamic dis-equilibrium of the combined reactions of the propionyl-CoA pathway explains the effectiveness of anaplerosis from propionyl-CoA precursors such as heptanoate.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号