Benzo[a]pyrene-induced cytochrome P450 1A and DNA binding in cultured trout hepatocytes - inhibition by plant polyphenols |
| |
Authors: | Tsuji Petra A Walle Thomas |
| |
Affiliation: | Department of Cell and Molecular Pharmacology and Experimental Therapeutics Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA. |
| |
Abstract: | Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (BaP) mainly induce lung cancer in humans, but induce liver cancer in fishes. The chemoprevention of cancers through inhibition of molecular events via phytochemicals is a potentially beneficial area of research, and has been carried out in human cell cultures in the past. Carcinogenesis initiation events are thought to occur in similar ways in fish and humans. Our study investigated the feasibility of using cultured rainbow trout CRL-2301 liver cells as a model for BaP-induced carcinogenesis and its prevention by dietary phytochemicals. Treatment with 1 microM BaP resulted in extensive time-dependent covalent binding to cellular DNA and marked cytochrome P450 (CYP) 1A induction, for both about a 20-fold increase, which is similar to what has been observed in cultured human cells. A surprisingly high expression of epoxide hydrolase (EH) activity in these cells likely contributed substantially to the bioactivation of BaP. Two methoxylated flavones and the stilbene resveratrol were effective inhibitors of both the BaP-DNA binding and CYP 1A induction, in particular 5,7-dimethoxyflavone (5,7-DMF), supporting a role for these dietary compounds as cancer chemopreventive agents. Unlike in human liver or bronchial cells, the main mechanism of inhibition of BaP-induced CYP 1A activity in trout liver cells appears to be direct competition at the protein level. Different cellular responses in any particular model used can be expected and the effect of cell context on the biological responses to xenobiotics, including carcinogens as well as polyphenols, must be considered. The trout CRL-2301 cells' sensitivity to BaP treatment is a clear advantage when contemplating a model system for studies of PAH-induced carcinogenesis and cancer chemoprevention. However, extrapolation to human organs should be done cautiously. |
| |
Keywords: | Benzo[a]pyrene Trout Chemoprevention Flavonoids CYP 1A 5,7-Dimethoxyflavone |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|