首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures
Authors:Muralidharan V  Rinker K D  Hirsh I S  Bouwer E J  Kelly R M
Institution:Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218.
Abstract:Interactions involving hydrogen transfer were studied in a coculture of two hyperthermophilic microorganisms: Thermotoga maritima, an anaerobic heterotroph, and Methanococcus jannaschii, a hydrogenotrophic methanogen. Cell densities of T. maritima increased 10-fold when cocultured with M. jannaschii at 85 degrees C, and the methanogen was able to grow in the absence of externally supplied H(2) and CO(2). The coculture could not be established if the two organisms were physically separated by a dialysis membrane, suggesting the importance of spatial proximity. The significance of spatial proximity was also supported by cell cytometry, where the methanogen was only found in cell sorts at or above 4.5 mum in samples of the coculture in exponential phase. An unstructured mathematical model was used to compare the influence of hydrogen transport and metabolic properties on mesophilic and hyperthermophilic cocultures. Calculations suggest the increases in methanogenesis rates with temperature result from greater interactions between the methanogenic and fermentative organisms, as evidenced by the sharp decline in H(2) concentration in the proximity of a hyperthermophilic methanogen. The experimental and modeling results presented here illustrate the need to consider the interactions within hyperthermophilic consortia when choosing isolation strategies and evaluating biotransformations at elevated temperatures. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 268-278, 1997.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号