Activation of muscarinic receptors inhibits beta-amyloid peptide-induced signaling in cortical slices |
| |
Authors: | Gu Zhenglin Zhong Ping Yan Zhen |
| |
Affiliation: | Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA. |
| |
Abstract: | Deposition of fibrillar aggregates of the beta-amyloid peptide (Abeta) is a key pathologic feature during the early stage of Alzheimer's disease. The initial neuronal responses to Abeta in cortical circuits and the regulation of Abeta-induced signaling remain unclear. In this study, we found that exposure of cortical slices to Abeta(1-42) or Abeta(25-35) induced a marked increase in the activation of protein kinase C (PKC) and Ca(2+)/calmodulin-dependent kinase II (CaMKII), two enzymes critically involved in a variety of cellular functions. Activation of M1 muscarinic receptors, but not nicotinic receptors, significantly inhibited the Abeta activation of PKC and CaMKII. Increasing inhibitory transmission mimicked the M1 effect on Abeta, whereas blocking GABA(A) receptors eliminated the M1 action. Moreover, electrophysiological evidence shows that application of Abeta to cortical slices induced action potential firing and enhanced excitatory postsynaptic currents, whereas muscarinic agonists potently increased inhibitory postsynaptic currents. These results suggest that Abeta activates PKC and CaMKII through enhancing excitatory activity in glutamatergic synaptic networks. Activation of M1 receptors inhibits Abeta signaling by enhancing the counteracting GABA(ergic) inhibitory transmission. Thus the muscarinic reversal of the Abeta-induced biochemical and physiological changes provides a potential mechanism for the treatment of Alzheimer's disease with cholinergic enhancers. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|