首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol
Authors:James C Ogbonna  Shota Tomiyamal  Hideo Tanaka
Institution:(1) Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305, Japan;(2) CREST, Japan Science and Technology Corporation (JST), Japan
Abstract:Effects of hydrodynamic stress, dissolved oxygen (DO) concentration and carbon sources on heterotrophic α-tocopherol production by Euglena gracilis were investigated. In a jar fermentor without baffle plates, increasing the agitation speed up to 500 rpm had no significant effect on cell growth and α-tocopherol production. However, in a jar fermentor equipped with baffle plates, both the cell growth and α-tocopherol production were highly suppressed at 500 rpm. At high hydrodynamic stress, the cells secreted nucleic acid-related substances to the culture broth and the shape of the cells shifted from elongated toward spherical. High DO concentration had adverse effects on both cell growth and α-tocopherol production, the optimum DO concentration being below 0.8 ppm. In comparison with glucose, the growth rate was lower but the α-tocopherol content of the cells was almost four times higher when ethanol was used as the organic carbon source. In a fed-batch culture with ethanol, a very high cell concentration of 39.5 g L-1 was obtained with α-tocopherol content of 1200 μg g-cell-1. This α-tocopherol content is very close to the values reported for photoautotrophic and photoheterotrophic cultures. A very high α-tocopherol productivity of 102 μg L-1 h-1 was obtained, indicating that heterotrophic cultivation of E. gracilis has a very high potential as a substitute for the current method of extraction from vegetable oils. This revised version was published online in June 2006 with corrections to the Cover Date.
Keywords:α  -tocopherol  heterotrophic culture  Euglenagracilis  hydrodynamic stress  dissolved oxygen concentration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号