首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sulfur Transformation in Microbially Mediated Pyrite Oxidation by Acidithiobacillus ferrooxidans: Insights From X-ray Photoelectron Spectroscopy-Based Quantitative Depth Profiling
Authors:Juan Li  Bowen Tu  Bingjie Ouyang  Xiaodong Han
Institution:1. State Key Laboratory for Mineral Deposit Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China;2. School of Life Sciences, Nanjing University, Nanjing, China
Abstract:The oxidation of pyrite and other sulfides is responsible for the generation of acid mine drainage and acid rock drainage, which leads to further contamination of soil and water. In these processes, microbial oxidation usually prevails over chemical oxidation. To determine the mechanism of microbial oxidation of pyrite, the interaction of Acidithiobacillus ferrooxidans with pyrite was comprehensively studied, and the sulfur transformation in the interaction was disclosed using X-ray photoelectron spectroscopy (XPS) depth profiling. Abundant bacterial cells attach to pyrite surface and form biofilms, which greatly enhances surface corrosion and results in two types of etching pits: bacteria-driven rod-shaped and chemically driven hexagonal etching pits. The details of XPS depth profiles on a reacted pyrite surface reveal that the surface sulfur was first oxidized into elemental sulfur. Thereafter, elemental sulfur was further oxidized to intermediate species S2O32?, SO32?, and ultimately to SO42?. The oxidation sequence of sulfur is S22?/S2?→Sn2?, S0→SO32?, and S2O32?→SO42?. Meanwhile, the remnant ferrous iron in the surface layer was released into solution and subsequently oxidized into Fe3+ by A. ferrooxidans and dissolved oxygen, which in turn enhanced the oxidation of sulfur. Fe3+, sulfate, and other ions (e.g., K+, Na+, NH4+) in the solution precipitated as jarosite, hydroniumjarosite, and ammoniojarosite. On the basis of results, a three-staged model is proposed to interpret the kinetics of microbial oxidation of pyrite.
Keywords:Acidithiobacillus ferrooxidans  microbial oxidation  pyrite  XPS depth profile
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号