A continuous spectrophotometric method for the determination of diphenolase activity of tyrosinase using 3,4-dihydroxymandelic acid. |
| |
Authors: | J N Rodríguez-López P Serna-Rodríguez J Tudela R Varón F Garcia-Cánovas |
| |
Affiliation: | Departamento de Química-Física, Escuela Universitaria Politécnica de Albacete, Universidad de Castilla-La Mancha, Spain. |
| |
Abstract: | A continuous spectrophotometric method for the rapid determination of diphenolase activity of tyrosinase is described. It uses 3,4-dihydroxymandelic acid (DOMA) as the substrate of tyrosinase and measures the final product, 3,4-dihydroxybenzaldehyde (DOBA). The spectrum of this product shows a bathochromic displacement of its absorbance maximum when the pH increases. The optimization of the method is described by using tyrosinase from several biological sources, whose enzymatic activities show different optimal pH. Thus, the enzymatic activity of mushroom tyrosinase was assayed at pH 7.5 and monitored at 350 nm (epsilon 350 pH 7.5 (DOBA) = 15,200 M-1 cm-1), whereas the spectrophotometric experiments with grape tyrosinase were carried out at pH 3.0 and monitored at 310 nm (epsilon 310 pH 3.0 (DOBA) = 9200 M-1 cm-1). The method for mushroom tyrosinase was found to be 50-fold more sensitive than the commonly used dopachrome assay, whereas for grape tyrosinase the method was found to be threefold more sensitive than the commonly used o-quinone production assay. The great solubility and stability of the chromophoric product, DOBA, as well as its high molar absorptivities at any pH, enable the method to be employed to determine the diphenolase activity of tyrosinase from different biological sources. |
| |
Keywords: | |
|
|